اثر حاد و مزمن تمرین تناوبی با شدت باال در محیط طبیعی و گرم بر سطوح سرمی BDNF در مردان سالم

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران

چکیده

هدف: هدف از انجام این پژوهش تعیین اثر تمرین تناوبی با شدت باال در محیط طبیعی و گرم بر تغییرات سطوح سرمی BDNF
مردان سالم بود.
روشها: در این پژوهش 24 دانشجوی مرد سالم با توجه به برآورد vVO2max به سه گروه تمرین در محیط گرم )8 نفر(، تمرین
در محیط طبیعی )8 نفر( و کنترل )8 نفر( به صورت همگن تقسیم شدند. آزمودنیهای گروه محیط گرم و طبیعی 12 جلسه طی
دو هفته متوالی تمرین کردند. هر جلسه تمرین شامل 5 وهله 150 ثانیه دویدن با شدت 90-85 درصد vVO2max روی نوارگردان
بود که بین هر وهله 150 ثانیه دویدن با شدت 50 درصد vVO2max به عنوان استراحت فعال قرار داشت. مقادیر BDNF به روش
االیزا سنجیده شد و دادهها با استفاده از روش آماری تحلیل واریانس یکطرفه تحلیل شدند.
نتایج: پس از یک جلسه فعالیت مقدار BDNF در دو گروه تمرینی گرم )018/0=P )و طبیعی )045/0=P )در مقایسه با پیشآزمون
افزایش معناداری داشت. البته این تغییرات در گروه محیط گرم در مقایسه با محیط طبیعی تفاوت معناداری نداشت )262/0=P.)
عالوه بر این در دو گروه تمرینی گرم )001/0=P )و طبیعی )012/0=P )بعد از گذشت دو هفته از فعالیت در مقدار BDNF افزایش
معناداری مشاهده شد. همچنین دو هفته تمرین بر سطوح BDNF بین گروههای تمرینی تفاوت معنادار به وجود نیاورد )267/0=P .)
نتیجهگیری: به نظر میرسد که فعالیت تناوبی صرف نظر از اینکه در محیط طبیعی یا گرم انجام شود باعث افزایش مقدار BDNF
میشود. 

کلیدواژه‌ها


عنوان مقاله [English]

Acute and chronic effect of high-intensity interval training in nutral and hot environment on serum BDNF levels in healthy men

نویسندگان [English]

  • Elnaz Taherirad
  • Hamid Rajabi
Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
چکیده [English]

Purpose: The purpose of this study was to determine the effect of high intensity interval training in
temperate and warm environment on serum BDNF in healthy men.
Methods: In this research, 24 healthy male students according to vVo2max estimation divided to 3 groups,
training in the warm environment (n=8), training in the temperate environment (n=8) and control (n=8)
categorized as matched. Subjects of experimental group were trained 12 sessions for two weeks. Each session
included 5 set of 150 seconds running on treadmill with %85-90 of vVo2max with 150 seconds active recovery
between each set with 50 percent of vVo2max. Serum BDNF was assessed using ELISA kits and the data were
analyzed by one-way ANOVA.
Results: The results show that one session high intensity interval activity in warm (p=0.018) and temperate
(p=0.045) environment induce significant increment in serum BDNF, However between training group,
significant difference was not observed (p=0.262). Furthermore two weeks of high intensity interval training
in warm (p=0.001) and temperate (p=0.012) environment resulted in significant increment in serum BDNF,
also two weeks of training on the level of BDNF not produce significant difference between training and
control groups (p=0.267).
Conclusions: It seems that high intensity interval training regardless of whether in temperate or warm
environment increases the level of BDNF.

کلیدواژه‌ها [English]

  • High intensity interval training
  • Environment temperature
  • Brain derived neurotrophic factor
  • VO2max
  1. Duman RS .Synaptic plasticity and mood
    disorders. Molecular psychiatry. 2002; 7Suppl
    1:S29-34.
    2. Nakagawa T, Tsuchida A, Itakura Y, Nonomura
    T, Ono M, Hirota F, et al. Brain-derived
    neurotrophic factor regulates glucose  metabolism by modulating energy balance in
    diabetic mice. Diabetes. 2000; 49(3): 436-44.
    3. Ernfors P, Kucera J, Lee K, Loring J, Jaenisch R.
    Studies on the physiological role of brainderived neurotrophic factor and
    neurotrophin- 3in knockout mice. The
    International journal of developmental
    biology. 1995; 39(5): 799-627.
    4. Pan W, Banks WA, Fasold MB, Bluth J, Kastin
    AJ. Transport of brain-derived neurotrophic
    factor across the blood-brain barrier.
    Neuropharmacology. 1998; 37(12): 61-1553.
    5. Karege F, Schwald M, Cisse M. Postnatal
    developmental profile of brain-derived
    neurotrophic factor in rat brain and platelets.
    Neuroscience letters. 2002; 328(3): 4-261.
    6. Smith MA, Makino S, Kvetnansky R, Post RM.
    Effects of stress on neurotrophic factor
    expression in the rat brain. Annals of the New
    York Academy of Sciences. 1995; 9: 771-234.
    7. Kramer AF, Hahn S, Cohen NJ, Banich MT,
    McAuley E, Harrison CR, et al. Ageing, fitness
    and neurocognitive function. Nature. 1999;
    400(6743): 9-418.
    8. Vaynman S, Gomez‐Pinilla F. Revenge of the
    “sit”: how lifestyle impacts neuronal and
    cognitive health through molecular systems
    that interface energy metabolism with
    neuronal plasticity. Journal of neuroscience
    research. 2006; 84(4): 715-699.
    9. Schmolesky MT, Webb DL, Hansen RA. The
    effects of aerobic exercise intensity and duration
    on levels of brain-derived neurotrophic factor in
    healthy men. Journal of sports science &
    medicine. 2013; 12(3): 11-522.
    10. Ferris LT, Williams JS, Shen C-L. The effect of
    acute exercise on serum brain-derived
    neurotrophic factor levels and cognitive
    function. Medicine and science in sports and
    exercise. 2007; 39(4): 34-728.
    11. Soya H, Nakamura T, Deocaris CC, Kimpara A,
    Iimura M, Fujikawa T, et al. BDNF induction
    with mild exercise in the rat hippocampus.
    Biochemical and biophysical research
    communications. 2007; 358(4): 961-967.
    12. Satarifard S, Gaeini A, Choobineh C. Changes in
    Blood Cortisol and Lactate Levels in Athletes
    after One Exercise Session in Cold, Warm and
    Natural Environments. Iranian Journal of
    Endocrinology & Metabolism. 2012; 14(2): 169-177.
    13. Goekint M, Roelands B, Heyman E, Njemini R,
    Meeusen R. Influence of citalopram and
    environmental temperature on exerciseinduced changes in BDNF. Neuroscience
    letters. 2011; 494(2): 150-40.
    14. Trost SG, Owen N, Bauman AE ,Sallis JF, Brown
    W. Correlates of adults' participation in physical
    activity: review and update. Medicine & Science
    in Sports & Exercise2002.; 12: 1996-2001.
    15. Godin G, Desharnais R, Valois P, Lepage L,
    Jobin J, Bradet R. Differences in perceived
    barriers to exercise between high and low
    intenders: observations among different
    populations. American Journal of Health
    Promotion1994. ; 8(4): 385-279.
    16. Gibala MJ, McGee SL. Metabolic adaptations
    to short-term high-intensity interval training: a
    little pain for a lot of gain? Exercise and sport
    sciences reviews. 2008; 36(2): 63-58.
    17. Laursen PB .Training for intense exercise
    performance: high-intensity or high-volume
    training? Scandinavian journal of medicine &
    science in sports. 2010; 20(1): 10-2.
    18. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA,
    Gibala MJ. A practical model of low-volume
    high-intensity interval training induce mitochondrial biogenesis in human skeletal
    muscle: potential mechanisms. The Journal of
    physiology. 2010; 588(6): 22-1011.
    19. Babak F, Gharakhanlou R, Bayati M,
    Aghaalinezhad H, Mohebbi F. Effect of
    intensity interval training on aerobic,
    anaerobic and hematological performance
    indices on athletes. Sport and Exercise
    physiology. 1390; 16(9): 25-40.
    20. Bartlett JD, Close GL, MacLaren DP, Gregson
    W, Drust B, Morton JP. High-intensity interval
    running is perceived to be more enjoyable
    than moderate-intensity continuous exercise:
    implications for exercise adherence. Journal of
    sports sciences. 2011; 29(6): 53-547.
    21. Barzegar H, Vasdi E, Borjianfard M. The effects
    of different exercise training on Brain-derived
    neutrophic factor in rats. Journal of Tehran
    biological sciences. 1394; 6(23): 1-9.
    22. Déry N, Pilgrim M, Gibala M, Gillen J ,
    Wojtowicz JM, MacQueen G, et al. Adult
    hippocampal neurogenesis reduces memory
    interference in humans: opposing effects of
    aerobic exercise and depression. Frontiers in
    neuroscience. 2013; 7(14): 7-56.
    23. Schmidt-Kassow M, Schädle S ,Otterbein S,
    Thiel C, Doehring A, Lötsch J, et al. Kinetics of
    serum brain-derived neurotrophic factor
    following low-intensity versus high-intensity
    exercise in men and women. Neuroreport.
    2012; 23(15): 889-701.
    24. De Lisio M, Phan N, Boreham DR, Parise G.
    Exercise-induced protection of bone marrow
    cells following exposure to radiation. Applied
    Physiology, Nutrition, and Metabolism. 2010;
    36(1): 7-80.
    25. Watson P, Shirreffs SM, Maughan RJ. Bloodbrain barrier integrity may be threatened by
    exercise in a warm environment. American
    Journal of Physiology-Regulatory, Integrative
    and Comparative Physiology. 2005; 288(6):
    1689-94.
    26. Garcia C, Chen M, Garza A, Cotman C, RussoNeustadt A. The influence of specific
    noradrenergic and serotonergic lesions on the
    expression of hippocampal brain-derived
    neurotrophic factor transcripts following
    voluntary physical activity. Neuroscience.
    2003; 119(3): 32-721. 
  • تاریخ دریافت: 27 خرداد 1394
  • تاریخ بازنگری: 13 مرداد 1395
  • تاریخ پذیرش: 04 مهر 1395
  • تاریخ اولین انتشار: 01 دی 1395
  • تاریخ انتشار: 01 دی 1395